If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+11k+34=6
We move all terms to the left:
k^2+11k+34-(6)=0
We add all the numbers together, and all the variables
k^2+11k+28=0
a = 1; b = 11; c = +28;
Δ = b2-4ac
Δ = 112-4·1·28
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-3}{2*1}=\frac{-14}{2} =-7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+3}{2*1}=\frac{-8}{2} =-4 $
| 6x+5=10x-12 | | 6p-3/4=3/2 | | k^2=11k+34=6 | | 3x=-x^2+x | | 8x-5(5-5x)=5 | | 7g-10=5+5/3g | | -9x+5x+8x=-5-7 | | 9b-8=-7b+24 | | 20=10x-6(2x+50) | | 20=10x-6(2x+50 | | 7x+40=A | | 5x-1=12x-42 | | 20x-10+10x=3.5 | | 20x-10+10x=2 | | s+8=3s-62 | | P+5=2p+4 | | 7−-d=14 | | 15c+4=19c | | 12+4(2x+4)=42 | | 3p/4+1=4 | | 7a+4=19a-20 | | 4p-19=5p-31 | | 4+4r=20 | | 2.43=0.0782*14+p | | 11-x=14 | | n^2-6n+7=-1 | | 17-7=2s | | 2(1p/5p+10)=22 | | 3(p/2-2)=3 | | 3−-g=10 | | 7=3+2d | | a^2+7a=7a+9 |